FLEXURAL-TORSIONAL COUPLED VIBRATION ANALYSIS OF A THIN-WALLED CLOSED SECTION COMPOSITE TIMOSHENKO BEAM BY USING THE DIFFERENTIAL TRANSFORM METHOD
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Abstract. In this study, a new mathematical technique called the Differential Transform Method (DTM) is introduced to analyse the free undamped vibration of an axially loaded, thin-walled closed section composite Timoshenko beam including the material coupling between the bending and torsional modes of deformation, which is usually present in laminated composite beams due to ply orientation. The partial differential equations of motion are derived applying the Hamilton’s principle and solved using DTM. Natural frequencies are calculated, related graphics and the mode shapes are plotted. The effects of the bending-torsion coupling and the axial force are investigated and the results are compared with the studies in literature.
1. [image: image1.wmf]L

Introduction

Figure 1. Configuration of an axially

loaded composite Timoshenko beam
A composite thin-walled beam with length 
[image: image135.png]


, cross sectional dimension 
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 and wall thickness 
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 is shown in Fig.1. The geometric dimensions are assumed to be 
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d
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 so the terms related to the warping stiffness and the warping inertia are small enough to be neglected. 

The bending motion in the 
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 direction, the torsional rotation about the 
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 axis and the rotation of the cross section due to bending alone are represented by 
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, respectively. A constant axial force 
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 acts through the centroid of the cross section which coincides with the 
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 axis. 
[image: image12.wmf]P

 is positive when it is compressive as in Fig.1. 

2. Formulation


The governing undamped partial differential equations of motion are derived for the free vibration analysis of the beam model represented by Fig.1. After the application of the Hamilton’s principle, the following equations of motion are obtained as follows
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Here, 
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 is the mass per unit length; 
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 is the polar mass moment of inertia; 
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 and 
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 are flexure–torsion coupling rigidity and shear rigidity of the beam, respectively.


The boundary conditions at 
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 and 
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 for Eqs. (1)-(3) are as follows
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A sinusoidal variation of 
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 with a circular natural frequency 
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 is assumed and the functions are approximated as 
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The following nondimensional parameters can be used to simplify the equations of motion 
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Substituting Eqs.(7) and (8) into Eqs.(4)-(5), the dimensionless equations of motion are

obtained as follows
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where the dimensionless coefficients are
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3. The Differential Transform Method


The differential transform method is a transformation technique based on the Taylor series expansion and is used to obtain analytical solutions of the differential equations. In this method, certain transformation rules are applied and the governing differential equations and the boundary conditions of the system are transformed into a set of algebraic equations in terms of the differential transforms of the original functions and the solution of these algebraic equations gives the desired solution of the problem.
A function 
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, any point in D. The differential transform of the function is given by
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where 
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 is the original function and 
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 is the transformed function. The inverse transformation is defined as
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Combining Eqs. (13) and (14) and expressing 
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 by a finite series, we get
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Here, the value of 
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 depends on the convergence of the natural frequencies [1]. Theorems that are frequently used in the transformation procedure are introduced in Table 1 and theorems that are used for boundary conditions are introduced in Table 2 [2].
Table 1. Basic theorems of DTM

	Original Function
	DTM
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Table 2. DTM theorems for boundary conditions

	
[image: image69.wmf]0

=

x


	
[image: image70.wmf]1

=

x



	Boundary Condition
	Transformed B.C.
	Boundary Condition
	Transformed B.C.
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4. Formulation with DTM


In the solution step, the differential transform method is applied to Eqs.(9)-(11). Here we quit using the bar symbol on 
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and instead, we use 
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Applying DTM to Eqs. (4)–(6), the boundary conditions are given as follows

at 
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5. Results and Discussion
In order to validate the computed results, an illustrative example, taken from Ref [3], is solved and the results are compared with the ones in the same reference. Additionally, the mode shapes of the beam are plotted.
Variation of the first five natural frequencies (coupled and uncoupled) of the above example with respect to the axial force is introduced in Table 3 and compared with the results of Ref. [3] and [4]. Here, it is noticed that the natural frequencies decrease as the axial force varies from tension 
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. Additionally,it is seen that the coupled natural frequencies are lower than the uncoupled ones. However, the fourth natural frequency becomes less when the bending-torsion coupling is ignored.
Table3. Natural frequencies with respect to the axial force 
	Natural Frequencies
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	Present
	Ref. [4]
	Present§
	Ref.[3]§
	Present
	Present§
	Ref.[3]§
	Present
	Ref.[4]
	Present§
	Ref.[3]§

	40.975
	40.97
	37.106
	37.1
	35.283
	30.747
	30.75
	28.064
	28.06
	21.987
	21.99

	224.259
	224.25
	197.672
	197.7
	217.341
	189.779
	189.8
	210.162
	210.16
	181.495
	181.5

	598.668
	598.66
	525.665
	525.6
	592.626
	518.791
	518.8
	586.519
	586.51
	511.818
	511.9

	647.595
	647.59
	648.495
	648.6
	647.411
	648.269
	648.3
	647.228
	647.22
	648.047
	648

	1125.71
	1125.71
	992.878
	-
	1119.85
	986.199
	-
	1113.950
	1113.95
	979.473
	-


§ Natural frequencies with coupling
The effects of the axial force 
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 and the Timoshenko effect, 
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, on the first four natural frequencies are introduced in Figs. 2(a-d). When Fig. 2 is examined, it is noticed that the natural frequencies decrease with the increasing rotary inertia parameter, 
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, because Timoshenko effect decreases the natural frequencies and this effect is more dominant on higher modes as expected. Additionally, since the fourth mode is torsion, the Timoshenko effect makes a slight change in the fourth natural frequency value.
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Figure 2. Effect of the Timoshenko effect on the first four natural frequencies (           , Timoshenko ; 
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                , Euler)
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Mode shapes of the considered beam under the effect of the compressive axial force (
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) are introduced with bending-torsion coupling in Figs. 5(a-d). When these figures are considered, it can be noticed that the first three normal modes are bending modes while the fourth normal mode is the fundamental torsion mode.
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Figure 5. The first four normal mode shapes of the composite beam with bending-torsion coupling 
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